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Fluid flows in precessing spherical shells
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Numerical solutions for fluid flows in precessing spherical cavities and spherical shells
have been obtained and are compared with earlier analytical expressions. It is shown
that the approximate validity of the analytical expressions extends further than could
have been expected. The details of the flow structure exhibit significant departures,
however, from the assumptions of the analytical theory. Standing waves are found in
the case of sufficiently thin shells. Some results on instabilities of the basic flow are
also discussed.

1. Introduction
The flow of an incompressible fluid contained in a precessing spherical cavity is

one of the basic problems of fluid dynamics. Traditionally it has been considered as
a special limit of the more general problem of fluid flows in precessing spheroidal
cavities. The interest in the latter type of flow arose in the 19th century when the
effects of the precession of celestial bodies on their fluid interiors were discussed. At
that time the viscosity of the fluid was neglected and only the coupling between fluid
and container due to pressure forces was considered. For a review of this work we refer
to Lamb’s (1932) treatise. In general, both viscous stresses exerted by the containing
rigid surfaces and pressure gradients contribute to the coupling, and the special case
of precessing spherical fluid shells is distinguished by the property that the effect of
the pressure vanishes. Analytical studies have usually been restricted to cases without
inner boundaries. The linear problem of flows in precessing spheroidal cavities has
been considered by Stewartson & Roberts (1963) and Roberts & Stewartson (1965).
The results of this theory are valid as long as the angle ε between the axis of the
average rotation of the fluid and the axis of the container is sufficiently small. The
linear analysis was extended by Busse (1968) into the nonlinear regime in that terms
of the order ε2 were taken into account.

Numerical calculations have been hampered until recently by the high computa-
tional costs of resolving the thin Ekman layers close to the rigid boundaries. Within
the past few years Ekman numbers of the order 10−4 have become computationally
accessible. Hollerbach & Kerswell (1995) have studied the spin-over mode which is
closely related to precession-driven flow at low precession rates. These authors fo-
cused on the structure of internal shear layers. Stationary flow in precessing spherical
shells has been simulated by Tilgner (1999b) who found deviations from a solid body
rotation on large spatial scales as well as the localized shear layers. Here, we study
these deviations in considerably more detail and compare quantitatively analytical
and numerical results. We also consider shells with a large inner core in which case
inertial oscillations are excited. Besides the flows which are stationary in the precess-
ing frame of reference, unsteady flows evolving from an instability of the steady flow
have also been found as will be demonstrated in § 6 of this paper.
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2. Mathematical formulation of the problem and numerical methods
We consider a fluid-filled spherical shell of thickness d which is rotating with

angular velocity ω. Using d and 1/ω as units of length and time, we can write the
non-dimensional equations for the velocity field in a frame of reference attached to
the precessing spherical shell (hereafter called the ‘mantle system’) in the form

∂

∂t
u+ (∇× u)× u+ 2(ẑ +Ω)× u = −∇π + E∇2u− (Ω× ẑ)× r, (2.1a)

∇ · u = 0. (2.1b)

Hats denote unit vectors. The Ekman number E is defined by E = ν/d2ω where ν is
the kinematic viscosity. π stands for a reduced pressure which can be dropped from
the analysis because only the curl of (2.1a) will be used. The z-axis of a Cartesian
system of coordinates (x, y, z) is fixed to the mantle in the direction of its axis of
rotation. Ω is the precession vector and its direction forms an angle α(0 < α 6 1

2
π)

with the z-axis. Its time dependence in the mantle system is given by

Ω = Ω(x̂ sin α cos t− ŷ sin α sin t+ ẑ cos α). (2.2)

Retrograde precession corresponds to Ω < 0. The boundary conditions require

u = 0 at r = ri = η(1− η)−1 and at r = ro = (1− η)−1 (2.3)

where η is the ratio of the radii of the shell. The solenoidal field u can be written in
terms of the poloidal and toroidal scalars v and w,

u = ∇× ∇× (vr̂) + ∇× (wr̂). (2.4)

The functions v and w can be decomposed into radial and angular parts

v = r

∞∑
l=1

l∑
m=−l

V m
l (r, t)Pm

l (cos θ)eimϕ, w = r2

∞∑
l=1

l∑
m=−l

Wm
l (r, t)Pm

l (cos θ)eimϕ (2.5)

where a spherical system of coordinates (r, θ, ϕ) has been introduced and where
Pm
l (cos θ) denotes the associated Legendre functions. Operating with r̂ · ∇× and
r̂ · ∇× ∇× on (2.1a) and projecting the result onto the system of spherical harmonics
one obtains two sets of equations for the functions Vm

l (r, t) and Wm
l (r, t). These

equations have to be solved subject to the boundary conditions

Vm
l =

∂Vm
l

∂r
= Wm

l = 0 at r = ri ≡ η/(1− η) and at r = ro ≡ (1− η)−1.

(2.6a)

If the inner boundary is stress-free, the condition at r = ri is replaced by

Vm
l =

∂2Vm
l

∂r2
=
∂Wm

l

∂r
= 0. (2.6b)

For the numerical solution of the equations for Vm
l (r, t), Wm

l (r, t) a pseudo-spectral
method is used and a Chebychev collocation scheme is employed in the radial direc-
tion. All nonlinear products are computed in direct space. The time stepping scheme
differs slightly from the version that has been used in earlier work on convection
in spherical shells (Tilgner 1996; Tilgner & Busse 1997). The nonlinear terms, the
diffusion terms and the forcing f are treated with second-order Adams–Bashforth,
implicit-Euler and Crank–Nicholson steps, respectively. The rationale behind this
time stepping scheme and issues of resolution are discussed in a separate publication
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(Tilgner 1999a). The direct simulations described in the next section have required
resolutions of up to 65 Chebychev polynomials and spherical harmonics of degree up
to 64. Occasional runs have used yet higher resolutions for comparisons.

3. Analytical expressions
The problem of steady flow in precessing ellipsoidal shells filled with a homogeneous

fluid has been solved by analytical methods in the works of Stewartson & Roberts
(1963), Roberts & Stewartson (1965) and Busse (1968). In the limit of the spherical
shell the analytical solution is given by an Ekman layer flow at the solid boundary
and by a rigid rotation with the angular velocity vector ω in the interior of the shell.
The analysis requires that the angle ε between the rotation vector ẑ of the shell and
ω is small since otherwise the Ekman boundary layer analysis is no longer valid.
The critical latitudes which are located near 30◦ in the case of small precession rates
|Ω| cause a divergence of the Ekman boundary layer in any case (see, for example,
Stewartson & Roberts 1963), but it is believed that this divergence has little influence
on the expression for the vector ω which is given by

ω = ẑω2 + ω2[ẑ ×Ω 2.62(Eω)1/2 + ẑ × (Ω× ẑ)(0.259(E/ω)1/2 +Ω · ẑ)]−1

×[2.622Eω + (0.259(E/ω)1/2 +Ω · ẑ)2] (3.1)

for a full sphere. We have adopted the expression from Busse (1968) which differs
slightly from that of Roberts & Stewartson (1965) because terms of the order ε2 have
been taken into account. When the term 0.259(E/ω)1/2 is neglected the expression
(3.1) describes the position of the vector ω on a circular cone spanned by the vectors
ẑ and Ω such that the axis of the cone points in the direction of ẑ +Ω |Ω|−1. As |Ω|
increases from zero the vector ω is displaced from ẑ in the direction perpendicular
to the meridional plane through ẑ and Ω in the retrograde sense with respect to the
rotation Ω× r. As |Ω · ẑ| becomes large in comparison with

√
E, the rotation vector

ω of the fluid moves on the conical surface towards the direction of Ω. Owing to
the term 0.259(E/ω)1/2 the symmetry of the positions of ω for positive and negative
values of Ω is destroyed and the axis of the cone is slightly displaced.

4. Comparison between analytical and numerical results
In order to study the range of parameter values for which the expression is

approximately valid a relatively large angle of 60◦ between Ω and ẑ has been
employed. The numerically determined vector ω is obtained through an average of
the poloidal component of the vorticity over the fluid sphere,

2ω = 〈∇× (∇w × r̂)〉+ 2ẑ, (4.1)

where the angular brackets indicate the average over the fluid shell. The rotation
vector can also be defined as a function of the radius r if the average is defined
as the mean over surfaces r = const. We shall denote the fluid rotation vector ωF

in this case. For numerical reasons the case of a fluid shell with η = 0.01 has been
used as an approximation for the full sphere. The results are shown in figure 1 where
the solid line indicates the intersection between the conical surface and the spherical
surface. In order to indicate the slight asymmetry of the circular line its reflection with
respect to the meridian connecting ẑ and Ω has been indicated by the dashed line.
As expected numerical and analytical results agree well for small values of |Ω|, but
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Figure 1. Direction of the average rotation vector ω of the fluid given by the colatitude along
the meridian connecting ẑ and Ω (abscissa) and the colatitude along the perpendicular meridian
(ordinate) as a function of the precession rate in the case α = 60◦, η = 0.01. Values based on the ana-
lytical expression (3.1) are indicated by diamonds, while numerical values obtained for E = 5×10−4

are given by circles for the same values of Ω. Starting at (0, 0) Ω = ±10−3,±10−2,±0.03,±0.07,±0.1
the last of which are indicated by filled symbols. The values Ω = −0.11,−0.12,−0.13 have no
corresponding values on the upper curves; the remaining diamonds and circles correspond to
Ω = ±0.15,±0.2,±0.3,±0.4 and ±0.5. Not connected by solid lines are the solutions obtained for
E = 3 × 10−4 (filled square) and for E = 10−4 (open square) for Ω = 0.07. The four triangles
correspond to E = 8× 10−4, 7× 10−4, 6× 10−4, 4× 10−4 (from left to right) for the case Ω = −0.2.

significant differences appear as |Ω| increases. Surprisingly the position of ω follows
the dashed line more closely than the solid line. Even at small angles between ω and
ẑ a difference between the analytical expression (3.1) and the numerical results can be
expected since the effect of the divergence of the Ekman layer at the critical latitudes
of ±30◦ is only approximately taken into account in the analytical theories. Since the
numerical results also exhibit considerable deviation from the rigid body rotation in
the interior assumed as a basis for expression (3.1) the agreement shown in figure 1
must be regarded as rather good.

The variation of the direction of the fluid rotation vector ωF as a function of
radius is shown in figure 2(a). Except for the expected rapid variation in the Ekman
boundary layer the averaged vorticity approaches rigid body rotation throughout
most of the interior. It is remarkable, however, that some variation of the direction
occurs over the inner 3/5 of the radius while the direction is nearly constant for the
outer 2/5 except for the Ekman boundary. Apparently the circulation driven by the
Ekman suction is less efficient in the spin-over of the inner part of the fluid shell.
The absolute value of ωF remains almost constant as a function of r if E is not
too small as shown in figure 2(b). The interior values are somewhat higher than the
values obtained from expression (3.1) which are 0.730, 0.673, 0.669, 0.579 in the same
sequence as the curves from top to bottom. But when E decreases the spin-up process
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Figure 2. (a) The direction of the fluid rotation vector ωF as a function of r for Ω = 0.07, α = 60◦
for E = 10−4 (circles), E = 3× 10−4 (squares) and E = 5× 10−4 (diamonds). Also shown is the case
Ω = −0.07 with E = 5 × 10−4 (triangles) for which the longitude scale has been shifted by +90◦.
The longitude is zero and the latitude is 30◦ for the direction of the precession axis. The symbols
correspond to equal distances in r over the interval 0.01 6 r 6 1.01, and 41 steps in r are indicated
with every eighth step denoted by a filled symbol. The point on the inner boundary adjacent to
the lowermost filled symbol of each curve is not shown. (b) The absolute value ωF of the fluid
motion rotation vector as a function of r for α = 60◦, η = 0.01, Ω = 0.07. The solid, long-dashed and
long-dash-short-dashed curves correspond to E = 10−4, 3 × 10−4 and 5 × 10−4, respectively. Also
shown is the short-dashed curve for Ω = −0.07 with E = 5× 10−4.

0.8

0.6

0.4

0.2

0
–0.5

Ω

Ekin

–0.3 –0.1 0.1 0.3 0.5

(a)
(b)

Figure 3. (a) Lines of constant radial component of the velocity field on the spherical surface
r = 0.75 for Ω = −10−3, η = 0.01, E = 10−4, α = 23.5◦. The pole points in the direction of the
ẑ-axis, while the axis of precession intersects the spherical surface directly below the pole. (b)
The kinetic energy of the deviation of the fluid motion from the state of rigid rotation with
the boundary as a function of Ω for α = 60◦ with E = 5 × 10−4 (dashed line). The solid line
indicates the theoretical result based on expression (3.1). The triangles indicate values obtained for
E = 4 × 10−4, 6 × 10−4, 7 × 10−4 and 8 × 10−4 (from top to bottom). The open and filled squares
indicate the kinetic energy obtained for E = 10−4 and E = 3× 10−4, respectively.

driven by the Ekman suction becomes inefficient and ωF decreases towards the centre
as indicated by the solution obtained for E = 10−4. An impression of the circulation
induced by the Ekman suction can be gained from a plot of the radial component of
the velocity field as shown in figure 3(a). The pattern which is reproduced after an
inversion with respect to the centre of the sphere clearly exhibits its m = 1 structure.

Another comparison of analytical and numerical results is obtained through a
presentation of the kinetic energy of the flow relative to the mantle frame. In figure
3(b) such a comparison is given which indicates that the largest discrepancy again
occurs in the case of weak Ekman suction, E = 10−4. When |Ω| is reduced, however,
even a weaker Ekman suction is sufficient to induce an approximate rigid rotation in
the interior in agreement with the presumption of the analytical theory of § 3.
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Figure 4. (a) The direction of the fluid rotation vector ωF as a function of r for
Ω = −0.2, E = 7 × 10−4 and α = 50◦ (diamonds), 60◦ (circles) and 70◦ (squares). The symbols
correspond to equal distances in r over the interval 0.01 < r 6 1.01, and 41 steps in r are indicated
with every eighth step denoted by a filled symbol. The point at r = 0.01 is not shown. (b) The
absolute value ωF of the fluid rotation vector as a function of r for the same cases as in (a). The
short-dash-long-dash line, the solid line and the long-dash line correspond to the cases α = 50◦, 60◦
and 70◦, respectively. Also shown by the short-dash line is the case Ω = −0.2, α = 90◦, E = 5×10−4.

When the precession rate Ω becomes larger in absolute value, more significant
deviations from a constant fluid rotation vector become noticeable. In figure 4(a) the
results for three different angles α are shown in the case Ω = −0.2. The direction of
ωF moves to latitudes lower than that of Ω for large portions of the interior and
the absolute value ωF also shows strong variations as indicated in figure 4(b). As
the angle α approaches 90◦ the coherent rotation of the interior fluid nearly vanishes
because the rotation imposed by the boundary is zero in the time average.

5. Precession-driven flows in spherical shells
When the inner radius of the spherical fluid shell is no longer negligibly small the

analytical expression (3.1) can still be used when the conditions at the inner boundary
are stress-free. A stress-free inner boundary is not realistic for planetary applications,
but in principle it can be realized in an experiment through the use of a very light
air-filled freely rotating concentric inner sphere. Since the fluid motion outside the
inner sphere approaches solid body rotation and a nearly vanishing viscous torque is
exerted on the inner sphere, the stress-free boundary is a valid approximation. Our
main reason for adopting this boundary condition is that it simplifies the following
analysis. Following the study of Busse (1968), we find that instead of extending the
angular momentum type integrals over the entire sphere, the integrals need to be
extended only over the fluid shell. This fact gives rise to a factor (1 − η5). After
taking into account that the Ekman number is based on the thickness of the fluid
shell we arrive at the conclusion that expression (3.1) is valid for a spherical fluid
shell with radius ratio η and with stress-free inner boundary if

√
E is replaced by√

E(1− η)/(1− η5).
Computations carried out for η = 0.9 show fairly good agreement with the ana-

lytical expression (3.1) as is evident from table 1. The variation of the fluid rotation
vector as a function of radius is much less than for the case of a full sphere. Except
for the Ekman layer the angle of orientation of ωF varies by only 1◦ or less in latitude
and by twice that amount in longitude. Similarly, the absolute value of the fluid
rotation vector deviates by at most a few percent from its mean value througout the
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External parameter Position of averaged rotation vector
Absolute values ω

α (deg.) Ω colatitude θ (deg.) longitude ϕ (deg.) of rotation vector

23.5 −0.01 21.74 (20.80) −40.13 (−35.70) 0.921 (0.935)
60 −0.01 49.39 (53.0) −61.9 (−50.2) 0.625 (0.602)
60 −0.03 59.33 (60.33) −25.24 (−17.7) 0.483 (0.495)
60 −0.003 21.80 (22.73) −90.66 (−82.80) 0.921 (0.922)

Table 1. Comparison between numerical and analytical (given in brackets) results in the case of a
precessing fluid shell with η = 0.9, E = 10−4 and with inner stress-free boundary. ϕ = 0 corresponds
to the position of the precession axis.

interior of the fluid shell. As expected the fluid rotation vector ωF differs less from
the rotation vector ẑ of the two boundaries when boundary conditions are no-slip at
both boundaries than when the inner boundary is stress-free.

An interesting feature exhibited by the numerical computations is the excitation
of inertial oscillations in the ‘polar’ regions of the fluid shell, i.e. at latitudes higher
than the critical ones on the inner boundary. These oscillations are stationary as seen
from the precessing reference frame and do not seem to have a significant effect on
the mean state of rotation of the fluid. A typical picture of the variation of the radial
component of the velocity is shown in figure 5. In the precessing frame of reference
the fluid flow can be described by

ũ = ω × r + v ≡ ω × r + ∇× (∇× rχ) + ∇× rψ (5.1)

where ω is assumed to be a constant vector. The linearized equations for the small
steady velocity field v are given by

∂

∂ϕ̃
v + 2(Ω+ ω)× v = −∇π, (5.2a)

∇ · v = 0, (5.2b)

where ϕ̃ denotes the azimuthal angle around the axis ω and where we have neglected
viscous friction. In the thin shell limit, η → 1, the following equations for the scalar
functions χ and ψ are obtained from the radial components of the curl and of the
(curl)2 of equation (2.1a) if |Ω| � |ω| can be assumed:

∂

∂ϕ̃
∇2L2χ+ 2ω · ∇L2ψ = 0,

∂

∂ϕ̃
L2ψ − 2ω · ∇L2χ = 0, (5.3)

where L2 is the negative Laplacian on the unit sphere, L2 ≡ r(∂2/∂r2)r − r2∇2. In
the polar regions where the approximation ω · ∇ ≈ ω∂/∂r holds, the solutions of
equations (5.3) satisfying the boundary condition χ = 0 at r = ri, ro can be written in
the form

χ = P 1
l̃
(cos θ̃)eiϕ̃ cos π(r − 1

2
(ri + ro)), (5.4a)

ψ = iπωP 1
l̃
(cos θ̃)eiϕ̃ sin π(r − 1

2
(ri + ro)), (5.4b)

where θ̃ denotes the colatitude with respect to the axis ω. The latitudinal wavenumber
l̃ is determined by

l̃ (̃l + 1) = (4ω2 − 1)π2(ro + ri)
2/4 (5.4c)

and corresponds closely to the wavenumber exhibited by the patterns of figure 5(a, b).
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(a) (b)

Figure 5. (a) Lines of constant radial velocity at the surface r = 9.5 in the case of a precessing
fluid shell with η = 0.9, Ω = −0.003, α = 60◦ and E = 10−4. The longitude of the precession axis
is located in the middle of the plot. (b) Lines of constant radial velocity in the meridional plane
spanned by the vectors ẑ and Ω for η = 0.8, Ω = −10−5, α = 23.5◦ and E = 10−4.

In the meridional cross-section shown in figure 5(b), the characteristic cone tangential
to the critical latitude of the inner spherical boundary is clearly evident.

6. Instability of precession-driven laminar flows
While the steady state of solid body rotation of the fluid in the limit Ω → 0 is ab-

solutely stable, hydrodynamic instabilities must be expected when deviations between
the vectors of rotation of the boundary and of the fluid become sufficiently large. The
choice of parameters used below is guided by the desire to obtain computationally
well resolved simulations in which an instability of numerical origin can be excluded
with certainty. Comparatively large Ekman numbers have therefore been used which
imply large values of |Ω| and α in order to drive the fluid sufficiently strongly. In ex-
periments, the instability is localized at onset around internal cylindrical shear layers.
Owing to the different set of control parameters, the instability in the simulations is
fully three-dimensional and invades the entire fluid volume.

In the integrations in time of the precession-driven flow an instability has indeed
been found which manifests itself in the form of an oscillation. In figure 6 the
oscillation is exhibited in the plot of the kinetic energy of motion as a function
of time for the case of a nearly full sphere (η = 0.01). The instability obviously
corresponds to a supercritical Hopf bifurcation since the Reynolds number, which is
proportional to E−1, must exceed a critical value at which the sinusoidal oscillations
set in with an infinitesimal amplitude. As E decreases the period of oscillation doubles
as shown in figure 6(a) and finally a chaotic time dependence is realized as indicated
in figure 6(b). The basic period of oscillation is still apparent in this latter figure.

The instability can be characterized by the symmetry it breaks. While the steady
laminar basic state exhibits the symmetry property

ψ(180◦ − θ, ϕ+ 180◦) = −ψ(θ, ϕ),

χ(180◦ − θ, ϕ+ 180◦) = χ(θ, ϕ),

}
(6.1)
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Figure 6. Time series of the kinetic energy Ekin in a full sphere (ri/ro = 0.01) with
Ω = −0.2, α = 60◦. The Ekman number is 6× 10−4 (a) and 5× 10−4 (b).

η E α (deg.) Ω Ekin Ea/Ekin period

0.01 8× 10−4 60 −0.2 0.598 0
0.01 7× 10−4 60 −0.2 0.6094 9.80× 10−5 10.4
0.01 6× 10−4 60 −0.2 0.619 1.16× 10−3 10.4 (PD)
0.01 5× 10−4 60 −0.2 0.628 2.33× 10−3 7.3 (CH)
0.01 4× 10−4 60 −0.2 0.638 3.3× 10−3 6.2 (CH)
0.01 7× 10−4 60 −0.15 0.559 0
0.35 7× 10−4 60 −0.2 5.14 1.4× 10−3 4.4 (CH)
0.01 7× 10−4 50 −0.2 0.4697 0
0.01 7× 10−4 70 −0.2 0.6897 4.6× 10−3 8.3 (CH)
0.01 5× 10−4 90 −0.2 0.7887 0
0.01 3× 10−4 90 −0.2 0.846 1.3× 10−2 (CH)

Table 2. The total kinetic energy, Ekin, and the time average of the energy in the antisymmetric
components, Ea, for shells with a ratio of inner to outer radii η = ri/ro at the Ekman numbers
E driven with the precession rate Ω about an axis which forms the angle α with the rotation axis
of the shell. In the last column the basic oscillation period of the antisymmetric components is
indicated which can also be determined when a period doubling (PD) or even a transition to a
chaotic state (CH) has occurred. All runs used a resolution of 65 Chebychev polynomials and
spherical harmonics up to l = 64 and m = 32.

when the representation u = ∇× rψ + ∇× (∇× rχ) is used for the velocity field, the
growing infinitesimal disturbances ũ exhibit the opposite symmetry,

ψ̃(180◦ − θ, ϕ+ 180◦) = ψ̃(θ, ϕ),

χ̃(180◦ − θ, ϕ+ 180◦) = −χ̃(θ, ϕ).

}
(6.2)

The time-averaged energy Ea of the components with the latter symmetry is a
convenient indication of the instability. The ratio of Ea over the total kinetic energy
Ekin is given in table 2. Ea/Ekin varies linearly with E − Ec, where Ec is the critical
Ekman number. A surprising property of the instability is that it causes only minute
deviations from the state of steady laminar flow even when E−1 approaches twice
its critical value as evident from table 2. A large α and an inner core with η = 0.35
favour the instability. As can be seen from table 2 the energy Ea attains its largest
value for α = 90◦ when the fluid rotation |ω| becomes rather small and the driving
term is strongest.
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7. Concluding remarks
The problem of the fluid flow in a precessing spherical cavity is one of the basic

problems of fluid mechanics. Because of its potential planetary application, it as well
as the more general problem of flow in a precessing spheroidal cavity had received
much attention in the 19th century. It was long believed that a flow of constant
vorticity as derived by Poincaré (see Lamb 1932) would be realized in the interior at
least in the limit of vanishing viscosity. But the analysis of Busse (1968) demonstrated
that the Poincaré solution does not correspond to the correct solution in the inviscid
limit of the basic equation and that instead a tangential discontinuity of the interior
velocity field must be expected. Since that time it has become clear that only through
numerical analysis can a better understanding of the flows in precessing cavities be
obtained. In this paper we have focused on the simplest of these problems, namely
the flow in precessing spheres and spherical shells.

The main results of this paper are that the analytical formulas derived for the
limit when the average vorticity of the fluid does not differ much from that of
the boundary are approximately valid for a much wider regime than may have
been expected. Moreover, they are applicable even in the case of a fluid shell after
appropriate rescaling. A new phenomenon found in the case of thin spherical shells
is standing inertial waves which appear to be excited by conditions near the critical
latitude. Although instabilities of the basic flow have also been found they do not
seem to lead to significant changes in the flow structure, at least not at the Ekman
numbers that can be realized with the present numerical computations. It thus has
not been possible to relate the instability found numerically to the experimentally
observed ones. It must be kept in mind, though, that in all experiments mentioned
in the literature such as, for instance, those of Malkus (1968) the ellipticity of the
container exerts a larger influence than the Ekman boundary layer. With the growing
capacity of computers even smaller Ekman numbers will become accessible and fully
turbulent states of flow may be revealed by the computations.
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